
1101

Building of the terrain model

from the municipal-level GIS data

by Natalia Mirza, Alexey Skvortsov1

The terrain model is one of the basic data structures used in GIS. In this

paper, a data structure is provided for the effective management methods

pertaining to the terrain model that covers a huge territory. The developed

algorithms are based on a special data structure, called a Multi-

Triangulation (MT), which allows the manipulation of a surface at variable

resolutions. By modifying of the original MT structure, it is possible to ma-

nipulate the data, which is larger than the available computer’s RAM.

Introduction

The problem with manipulating a very large, 3d-model of open-air areas

(examples: large-scale city models and extensive objects of industrial, civil,

and transportation engineering; small-scale area models) is finding an ap-

plication in various fields. Due to the increasing usage of laser scanners,

there is a problem with processing the millions of measuring points. There

is only one way to manage this huge amount of data. Regular raster grids

provide an easy way to resolve the problem (e.g. works of Silva, 2001; Pa-

jarola, 2002). However, sometimes it is impossible to use grids, not only

because of the data redundancy, but also because of the source data for ter-

rain construction. For GIS analysis, height fields are not enough. Structural

lines are very important for a municipal-level GIS. In order to build the sur-

face model of the road, it is very important to include the axis line, borders,

edges etc. In such a case, a constrained triangulated irregular network (TIN)

is used.

1 Tomsk State University, Russia.

1102

Modern algorithms focus mostly on the visualization speed and quality

(e.g. Batched Multi-Triangulations by P. Cignoni, 2005). However, for

GIS and CAD, the most important thing is to build the entire model for

analysis. There is no effective approach to building a constrained TIN from

data larger than the available RAM.

Preliminaries

To work with a TIN built on a massive data set, it is necessary to use

high-performance hardware and special TIN simplification algorithms (e.g.

works of C.T. Silva, 2001; E.Puppo, L. De Floriani, 1997). Using simplifi-

cation algorithms means finding a compromise between the speed of terrain

processing and the quality of the results. This problem is solved by using a

Multi-Triangulation (MT) that can be loosely defined as a special data

structure, representing a set of triangulation fragments, forming a Directed

Acyclic Graph (DAG). Three-dimensional models of variable resolution

based on an MT allow surface processing at the given level of detail. It

means that model detailing (TIN triangles count) is set by some user-

defined criteria. In this case, by selecting the appropriate criteria, one can

create a model that will have high processing speed and high quality.

To provide a stronger MT definition, it is necessary to introduce some

terms (described in works of M. De Berg, 1995; E. Puppo, L. De Floriani,

1997).

A triangulation domain is the portion of the plane covered by its trian-

gles.

Let us consider T and Ti to be two triangulations, such that the domain

of Ti is contained in T. In such a case, T and Ti are called compatible, if

there is a triangles subset T’ in T, which is a triangulation if it has the same

domain as Ti. Ti is called a fragment (with respect to T) and T’ is a floor of

Ti. Ti is minimally compatible with T if there is no subset in Ti compatible

over T.

A local modification T over Ti is an operation that replaces triangles of

T’ with triangles of Ti and denoted as T Ti0.

If every fragment Ti is compatible with T, than the sequence of frag-

ments

t = (T0,...,Tn) is called a compatible sequence of triangulations.

As a result, a Multi-Triangulation is a DAG, having elements of com-

patible sequences of triangulations as nodes.

A root of the DAG is the most detailed (the coarsest) fragment, a drain

of the DAG is the coarsest (the most detailed) fragment in a MT for build-

ing using simplification (refinement) algorithms.

1103

An MT is represented by the following data structures:

1. A list of the MT triangles: Each triangle contains pointers to the three

points composing it, pointer to the fragment containing it (upper fragment),

and pointer to the fragment containing it in its floor (lower fragment).

2. A list of the MT fragments: Each fragment contains a list of pointers

to the triangles composing it and a list of pointers to triangles composing its

floor.

3. A list of the vertices: each vertex contains a necessary set of geomet-

ric (coordinates, normal) and attributive (color) data.

There are many algorithms based on an MT that allow for building a

surface at variable resolution. One of them is implemented in the Microsoft

DirectX API (Progressive Mesh by E. Puppo, 1998) and is widely distrib-

uted in various graphics systems based on DirectX.

However, all existing algorithms based on an MT can work only if the

MT structure fits into computer’s RAM. Very often, for some real-world

problems, it is important to process a terrain that is larger than computer’s

available RAM.

In such a case, it is necessary to develop some algorithms that can man-

age very large terrains and permit fast visualization without visible quality

drawbacks.

Modification of a Multi-Triangulation

To build an MT that allows the handling a very large amount of input

data, it is necessary to locate the fragments in memory that are more likely

used, i.e. fragments that will be included in the result triangles list. Such

fragments potentially have to satisfy the user’s extraction criteria. That is

why the MT structure should allow loading only necessary fragments and

unload unnecessary ones in real time.

The original MT has a very chaotic structure. This means that in the

general, the detailing of one triangle may cause the need to detail a set of

random triangles through the DAG; in this scenario, the full MT structure

must be located in RAM. However, this is impossible within the described

problem. In order to handle very large data volumes, change the structure

of the original MT in such a way that would decrease the triangles' interde-

pendency.

1104

Splitting a Multi-Triangulation up into parts

This suggested approach provides the order of the MT structure; it de-

pends on the idea of separating a Multi-Triangulation DAG into several in-

dependent subgraphs. This will enable one to handle each subgraph sepa-

rately.

Input Data: A (constrained) triangulation.

Algorithm Structure:

1. The source triangulation is divided into rectangular parts.

2. A Multi-Triangulation is built inside each rectangle by the classical

algorithm (M. De Berg, 1995; E. Puppo, L. De Floriani, 1997).

3. Residuary triangulation is simplified up to the coarsest fragment.

End of the Algorithm

As a result, one will get the MT structure as schematically shown in

Figure 1.

Root

Main part

Cluster 1 Cluster 2 Cluster n

Fig. 1 - Multi-Triangulation structure

As one can see from this figure, there are several parts –Clusters and a

Main Part (in fact Cluster 0), which can be loaded into the RAM inde-

pendently.

A Multi-Triangulation that has structure as shown in Figure 1 is called

Clustered Multi-Triangulation (C-MT).

1105

Splitting an MT cluster up into blocks

M. De Berg, in his work, tries to decrease the DAG confusion by modi-

fying the building algorithm. He suggests deleting only non-adjacent points

at each step of simplification. As a result, the fragments of the current sim-

plification step depend only on the fragments from the next steps as shown

in Figure 2.

Fig. 2 – Fragments independency

We can join the fragments of each step into a block. As a result, the MT

structure will be as shown in the Figure 3.

I

block

II

block

III

block

Cluster C-MT Cluster BC-MT

Fig. 3 – Blocks of a C-MT

Fragments of

 the I step

Fragments of

the II step

Fragments of

the III step

1106

A Clustered Multi-Triangulation with clusters divided into these blocks

is called Block-Clustered Multi-Triangulation (BC-MT).

Calculation the number of the clusters

It is necessary to clarify into which rectangles source triangulation

should be divided. The structure of the division directly influences the algo-

rithm speed and correctness. The number of rectangles defines the number

of MT trees: if this count is too small, then it is possible to get some re-

gions with insufficient detail level, and if the number is too large, then a

vast amount of memory will be required.

If the count of vertices in a С- MT is the same for every tree and for the

main part, it is called a balanced MT.

Using a balanced С-MT, one can achieve a good visualization quality to

size of located memory ratio.

The authors failed to obtain an analytical assessment of the specified

number of clusters because of the uncertainty of the form of the data distri-

bution. The experimental results show that the number of clusters for a bal-

anced BC-MT is practically the same for different distributions. That is

why we represent the results for a uniform distribution.

During the experiment, the authors constructed several BC-MTs and

empirically established the number of clusters. Table 1 shows the depend-

ence between the number of the clusters and the number of source points

(N).

Tab. 1 – The number of the cluster and the number of the source points according to the

experimental results
N, thousands 100 200 300 400 500 600 700 800 900 1000

ClusterCount 30 38 42 46 50 53 56 59 62 65

By the means of the least-squares method, the approximating function is

received as follows:

CN(N) =

 732,13866,1

383

N
 (1)

Figure 4 shows the difference between experimental results and the ana-

lytical function.

1107

0 200 400 600 800 1000

20

40

60
The number

of the clusters

CN(N)

N, thousands

Fig. 4 – Approximating function CN(N) that returns the number of the cluster from the

number of the source points

Building BC-MT within a RAM constraint

Based on experimental research, the number of triangles in an MT ex-

ceeds the number of the source triangles by a multiple of three.

This means that even if there is enough RAM for building the source

triangulation, it may be insufficient for an MT.

To solve the problem, consider locating only the main part, and not

more than one cluster of an MT, in RAM. After building a cluster, it should

be saved into a file and unloaded from the RAM.

There is only one problem with this approach: when the main part

needs to be built, all the clusters will be unloaded, and it will not be possi-

ble to set the links between the main part and the clusters. To avoid this sit-

uation, some temporal structures are used.

The gateway of the cluster is a fragment, consisting of the triangles of

the cluster, which connect this cluster to the main part or the drain.

If one builds a gateway for every cluster, the structure of the C-MT will

be as shown in Figure 5.

After including gateways in the structure, it is possible to unload the

clusters without any consequences, because all necessary information for

building the main part and drain is stored in the gateways.

1108

Drain

Main part

Cluster 1 Cluster 2 Cluster n

Gateway Gateway Gateway

Fig. 5 – BC-MT structure with gateways

The algorithm of building BC-MT is as follows.

Algorithm of BC-MT building

Here is the algorithm that shows the using of the gateways to build an

MT that is larger than available RAM.

Algorithm Structure:

Input Data: Triangulation.

1. According to the experimental results, the number of clusters in a

BC-MT is calculated by eq. (1).

2. The set of source points is divided into rectangles in such a way that

every rectangle that contains CN(N) points inside.

3. Within every rectangle, a cluster is built by the classical algorithm

(by M. De Berg, 1995; E. Puppo, L. De Floriani, 1998). All the

fragments of each simplification step form the block of cluster.

4. After building a cluster, it is necessary to create the gateway, con-

sisting of the triangles that do not have links to the lower fragment.

1109

The cluster is saved into a file and unloaded from memory.

5. Build the main part by the means of simplification of the triangula-

tion, using the data remaining after cluster building.

6. Build the drain.

7. Each cluster is loaded to the memory and by the means of the gate-

way, the links between that cluster and main part are set.

8. Delete the gateway, and the cluster is saved and unloaded.

End of the Algorithm.

The complexity of the algorithm is N1.5.

After building the BC-MT , it goes to the memory manager that manag-

es its loading level in compliance with the extraction criteria.

Using a BC-MT for building of a terrain model from the munici-

pal-level GIS data

In the previous sections, the modification of the Multi-Triangulation is

considered. The source data for a BC-MT building is a triangulation that

cannot be constructed from the huge data of the municipal-level GIS. The

discussion now leads to the using of a BC-MT to solve that problem.

Common idea

Information:

We have 3D points and lines as the source data for terrain model build-

ing.

Algorithm Structure:

1. It is necessary to divide the source data in such a way so that it is

possible to build a triangulation for every part.

2. For every triangulation, a BC-MT is built and saved in the file.

3. The list of BC-MTs goes to the memory manager.

End of the Algorithm.

Out-of-core memory control

At the beginning, only the roots of each BC-MT are loaded in the

memory. The load level of other clusters depends on the extraction criteria.

For instance, if MT clusters are rather close to the observer (or camera),

then it is necessary to load them up to the maximum level of detail; the far-

ther the cluster is from the observer, the lower the level of detail needed.

1110

In the course of the extraction algorithm, each triangle is checked for

criteria satisfaction. If a triangle does not satisfy the criteria, it should be

refined by the triangles of a low fragment. The link to the low fragment

causes the need to load the block in which it is stored. The block demands

loading of all parent blocks. It is very important to manage the memory in a

way that provides loading of BC-MT at maximum width. Otherwise, if BC-

MT is loaded lengthwise, we may waste all the memory on detailing one

small piece of the terrain.

Since a terrain model cannot be stored in the RAM, loading some blocks

will require unloading other ones. The standard manner in this case is un-

loading those blocks that are unused for the longest time. However, MT is

a DAG, so it is impossible to unload any block without possibly breaking

the structure. Therefore, it is necessary to unload only terminal elements in

the DAG.

Information:

The queue of blocks is for loading forms according to the extraction cri-

teria. In the queue, every cluster is represented by only 1 block with a max-

imal number.

The memory control can be represented by 2 procedures, working asyn-

chronously.

Memory managing

1. The first element from the queue is loaded only if the last loaded

block was from another cluster. Otherwise, it will move to the next

element. It is necessary to perform the loading of a BC-MT in

width.

2. If memory is not sufficient for loading a block, it is necessary to un-

load some blocks. The blocks are chosen from the ones that were

unused for the longest period, and the memory manager has a max-

imal number of the blocks. If the previous unloaded block was from

the same cluster, then it is necessary to check the next one.

To make the algorithm clearer, it is necessary to give a simple example.

For example, a part of the territory of a city was scanned by the laser

scanner. By the received data (i.g. points with X,Y,Z coordinates), it is pos-

sible to build a BC-MT. As one can see on the Figure 6, all of the points are

divided into 4 parts. Then, according to these parts, 4 clusters of BC-MT

are built. The extraction criterion in the example depends on the distance

from the observer. Each cluster can be loaded independently; Figure 6 illus-

trates the level of data, which is loaded within each cluster.

1111

Observer

I

cluster

II

cluster

III

cluster

IV

cluster

70%

loaded

0%

loaded

10%

loaded

10%

loaded

Fig. 6 – An example of BC-MT loading

Then, if observer moves, the level of detail changes in real time

according to his new position. While changing the blocks, the closest

clusters are loaded and the blocks of all the other clusters are unloaded.

Conclusion

The proposed algorithm can be used in the GIS and CAD systems for

the terrain’s analysis (Figure 7). It is very important for the city planning

process as well.

In this article, algorithms are proposed for the building of very large ter-

rain models based on a Multi-Triangulation, allowing the management of

models that essentially exceed the size of the available computer’s RAM.

Experimental modelling of the developed algorithms shows high speed of

visualization and acceptable size of occupied memory at the same time.

1112

(a) (b)

(c) (d)

Fig.7 – An example of terrian’s model analythis: a) – isolines; b) – isocontours; c) – slopes;

d) – a section of the terrian.

References

Cignoni P., Ganovelli F., Gobetti E., Marton F., Ponchio F., Scopignio R. (2005),

‘Batched multi triangulation’, Proceedings IEEE Visualization, 8: 207-214.

De Berg M., Dobrindt K. (1995), ‘On levels of detail in terrains’, Proceedings of

the eleventh annual symposium on Computational geometry, 95, 2: 426-427.

De Floriani L., Magillo P., Puppo E. (1997), ‘Building and traversing a surface at

variable resolution’ On Visualization. 97, 6: 18-24.

Pajarola R. (2002), ‘Overview of Quadtree based Terrain triangulation and Visual-

ization’, Tech. Rep. UCI-ICS TR 02-01, Department of Information, Computer

Science University of California, Irvine.

Puppo E. (1998), ‘Variable resolution triangulations’, Computational Geometry,

18: 219–238.

Farias R., Silva. C. T. (2001), ‘Out-Of-Core Rendering of Large, Unstructured

Grids’. Computer Graphics & Applications, 10: 42–51.

