•  .., ..., , (. ), (. )

     —  . 5 , 4 , 4 ( 28 )   , 4  .     (, , )   ( , , , ). , ,  . ,    . , ,  .

  1.  ..   // .  . . 1934. № 4. . 793-800.
  2. .., ..   // :  . . 1. : - . -, 1998. . 194-205.
  3. ..   //  . . . 10 (88). ., 1985. . 3-35.
  4. .. //  . . . 10(88). ., 1985. . 57-66.
  5. .., ..     //   : . . 2. , 1988. . 60-61.
  6. .., .. , // -2000: - . : - . -, 2000. . 41-45.
  7. .., .. , // -2000: - . : - . -, 2000. . 37-41.
  8. .., .. // .  . . 1. : - . -, 1998. . 61-66.
  9. .., .. . .: -, 1993. 213 .
  10. ..     . / .  . .: , 2000. 352 .
  11. .   C++ / .  . .: , 1997. 304 .
  12. ., . : / .  . .: , 1989. 478 .
  13. ., . / .  . .: , 1980. 204 .
  14. .., .. // :  . . 1. : - . -, 1998. . 127-138.
  15. .., .. // .  . . 1. : - . -, 1998. . 22-47.
  16. ..   , // . 1986. № 4. . 87-91.
  17. .. // .  . . 1. : - . -, 1998. . 48-60.
  18. Agarwal P.K., Suri S. Surface approximation and geometric partitions // Proc. 5th ACM-SIAM Symp. on Discrete Algorithms. 1994. P. 24-33.
  19. Bjørke J.T. Quadtrees and triangulation in digital elevation models // International Archives of Photogrammetry and Remote Sensing, 16th Intern. Congress of ISPRS, Commission IV. Part B4. 1988. Vol. 27. P. 38-44.
  20. Evans F., Skiena S., Varshney A. Optimizing triangle strips for fast rendering//Proc. IEEE Visualization. 1996. P. 319-326.
  21. De Floriani L. A pyramidal data structure for triangle-based surface description//IEEE Comp. Graphics and Applications. 1989. Vol. 9, № 2. P. 67-78.
  22. De Floriani L., Falcidieno B., Nagy G., Pienovi C. On sorting triangles in a Delaynay tessellation//Algorithmica. 1991. № 6. P. 522-535.
  23. De Floriani L., Magillo P., Puppo E. Compressing Triangulated Irregular Networks//Geoinformatica. 2000. Vol. 1, № 4. P. 67-88.
  24. De Floriani L., Marzano P., Puppo E. Multiresolution Models for Topographic Surface Description//The Visual Computer. 1996. Vol. 12, № 7. P. 317-345.
  25. Fowler R.J., Little J.J. Automatic extraction of irregular network digital terrain models//Computer Graphics. 1979. Vol. 13, N 3. P. 199-207.
  26. Gilbert P.N. New results on planar triangulations. Tech. Rep. ACT-15, Coord. Sci. Lab., University of Illinois at Urbana, July 1979.
  27. Guibas L., Stolfi J. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams // ACM Transactions on Graphics. Vol. 4, N 2. 1985. P. 74-123.
  28. Guttmann A., Stonebraker M. Using a Relational Database Management System for Computer Aided Design Data // IEEE Database Engineering. 1982. Vol. 5, N 2.
  29. Heller M. Triangulation algorithms for adaptive terrain modeling // Proc. of the 4th Intern. Symp. on Spatial Data Handling, July 1990. P. 163-174.
  30. Kirkpatrik D.G. Optimal search in planar subdivisions // SIAM J. Comput., 1983. Vol. 12, N 1. P. 28-35.
  31. Lawson C. Software for surface interpolation // Mathematical Software III. NY: Academic Press, 1977. P. 161-194.
  32. Lawson C. Transforming triangulations // Discrete Mathematics. 1972. N 3. P. 365-372.
  33. Lee D. Proximity and reachability in the plane//Tech. Rep. N. R-831, Coordinated Sci. Lab. Univ. of Illinois at Urbana. 1978.
  34. Lee D., Schachter B. Two algorithms for constructing a Delaunay triangulation // Int. Jour. Comp. and Inf. Sc. 1980. Vol. 9, N 3. P. 219-242.
  35. Lee J. Comparison of existing methods for building triangular irregular network models of terrain from grid digital elevation models//Int. Journal of GIS. 1991. Vol. 5, № 3. P. 267-285.
  36. Lewis B., Robinson J. Triangulation of planar regions with applications//The Computer Journal. 1978. Vol. 21, N. 4. P. 324-332.
  37. Lingas A. The Greedy and Delaunay triangulations are not bad… // Lect. Notes Comp. Sc. 1983. Vol. 158. P. 270-284.
  38. Lloyd E. On triangulation of a set of points in the plain // MIT Lab. Comp. Sc. Tech. Memo. 1977. № 88. 56 p.
  39. Manacher G., Zobrist A. Neither the Greedy nor the Delaunay triangulation of planar point set approximates the optimal triangulation//Inf. Proc. Let. 1977. Vol. 9, N. 1. P. 31-34.
  40. McCullagh M.J., Ross C.G. Delaunay triangulation of a random data set for isarithmic mapping//The Cartographic Journ. 1980. Vol. 17, N. 2. P. 93-99.
  41. Midtbø T. Spatial Modeling by Delaunay Networks of Two and Three Dimensions. Dr. Ing. thesis. -Department of Surveying and Mapping, Norwegian Institute of Technology, University of Trondheim, February 1993.
  42. Nagy G. Terrain visibility // Computers and Graphics. 1994. Vol. 18, N. 6.
  43. Puppo E. Variable resolution triangulations//Computational Geometry. 1998. Vol. 11. P. 219-238.
  44. Shapiro M. A note on Lee and Schachter's algorithm for Delaunay triangulation // Inter. Jour. of Comp. and Inf. Sciences. 1981. Vol. 10, N. 6. P. 413-418.
  45. Sibson R. Locally equiangular triangulations//Computer Journal. 1978. Vol. 21, N. 3. P. 243-245.
  46. Sloan S.W. A fast algorithm for constructing Delaunay triangulations in the plane // Adv. Eng. Software. 1987. Vol. 9, N. 1. P. 34-55.
  47. Touma G., Rossignac J. Geometric compression through topological surgery // ACM Transactions on Graphics. 1998. Vol. 17, N. 2. P. 84-115.
  48. Voronoi G. Nouvelles applications des parameters continues à la therie des formes quadratiques. Deuxième Mémorie: Recherches sur les parralléloèddres primitifs // J. reine angew. Math. 1908. N. 134. P. 198-287.
  49. Watson D.F. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes // The Computer Journal. 1981. Vol. 24, N. 2. P. 167-172.