

Перспективы ВІМ автомобильных дорог в РФ

Скворцов Алексей Владимирович,

д.т.н., профессор, академик РАТ, генеральный директор ООО «ИндорСофт», г. Томск

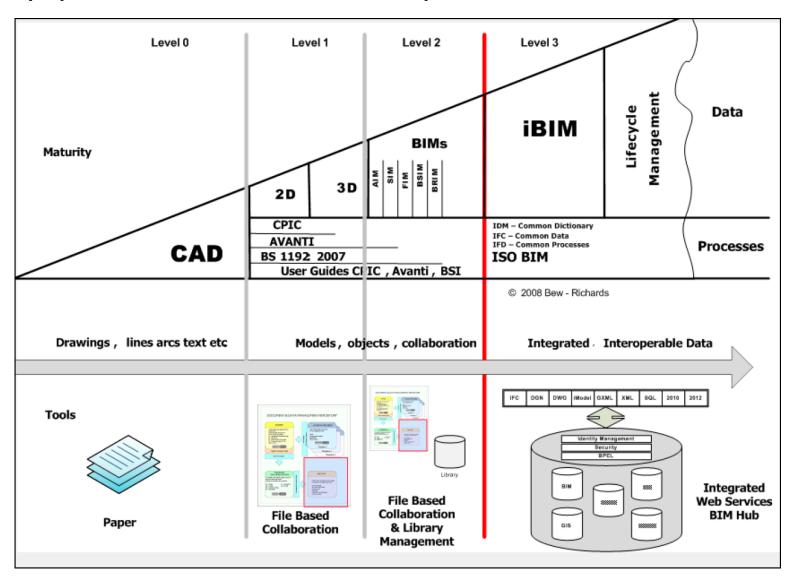
Петренко Денис Александрович, технический директор ООО «ИндорСофт», г. Томск

Москва – 13 октября 2014 г.

1.1. Что такое BIM?

Во исполнение Протокола №2 заседания президиума Совета при Президенте Российской Федерации по модернизации экономики и инновационному развитию от 4 марта 2014 г. ведётся разработка:

«Плана поэтапного внедрения технологий информационного моделирования в области промышленного и гражданского строительства».


ISO 29481-1 «Building information modelling — Information delivery manual — Part 1: Methodology and format»:

2.2. «BIM (англ. building construction information model) — это цифровое представление любого строительного объекта (включая здания, мосты, дороги и пр.), совместно используемое и являющееся надёжным источником принятия решений»

BIM автодорог

1.2. Модели зрелости ВІМ

Графическая модель «Клин Бью-Ричардса»

1.3. Модель зрелость BIM в США

I-СММ: модель зрелости ВІМ в National ВІМ Standard (США):

- A. Data Richness (Полнота данных).
- B. Life-cycle Views (Вид жизненного цикла).
- C. Roles Or Disciplines (Должностные обязанности).
- D. Change Management (Управление изменениями).
- E. Business process (Бизнес-процесс).
- F. Timeliness/Response (Время выполнения запросов).
- G. Delivery Method (Метод доступа).
- H. Graphical Information (Графическая информация).
- I. Spatial Capability (Пространственные возможности).
- J. Information Accuracy (Информационная точность).
- K. Interoperability/IFC Support (Интероперабельность/Поддержка IFC).

1.4. Зрелость ВІМ: полнота данных

Модель зрелости BIM в National BIM Standard (США):

A. Data Richness (Полнота данных):

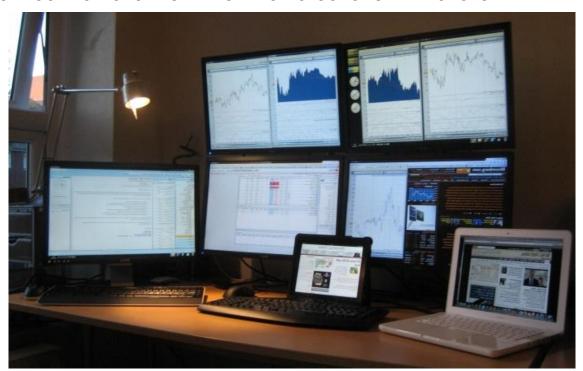
- 1. Полнота ВІМ-модели: достаточна для принятия ВСЕХ управленческих и технических решений.
- 2. Данные имеют официальный статус и являются первичным источником принятия решений (не бумажный документ, а данные!).
- 3. ВІМ это не модель данных, а модель знаний!

1.5. Зрелость ВІМ: вид жизненного цикла

Модель зрелости BIM в National BIM Standard (США):

B. Life-cycle Views (Вид жизненного цикла):

- 1. Единая модель на всех этапах жизненного цикла (сейчас имеется противоречие между проектированием и эксплуатацией САПР и ГИС).
- 2. Прямая передача информации между этапами ЖЦ.
- 3. Единая стоимостная модель для оценки дороги в течение всего ЖЦ.
- 4. Данных достаточно для расчёта во внешней среде (межотраслевые, социально-экономические расчёты; HDM-4?)!

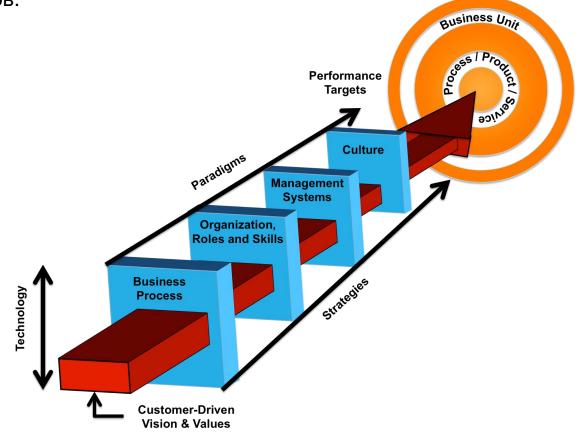


1.6. Зрелость ВІМ: должностные обязанности

Модель зрелости BIM в National BIM Standard (США):

C. Roles Or Disciplines (Должностные обязанности):

- 1. Все должностные обязанности в рамках всех этапов жизненного цикла полностью поддерживаются, причём в рамках одной программной системы на одном рабочем месте.
- 2. Все контрактные обязанности внешних исполнителей могут быть полностью исполнены только на основе ВІМ-системы.



1.7. Зрелость BIM: управление изменениями

Модель зрелости BIM в National BIM Standard (США):

D. Change management (управление изменениями):

1. В организации внедрена процесс анализа бизнес-процессов и метод «анализа корневых причин», а реакция на проблемы не превышает 48 часов.

1.8. Зрелость ВІМ: бизнес-процессы

Модель зрелости BIM в National BIM Standard (США):

E. Business process (Бизнес-процесс):

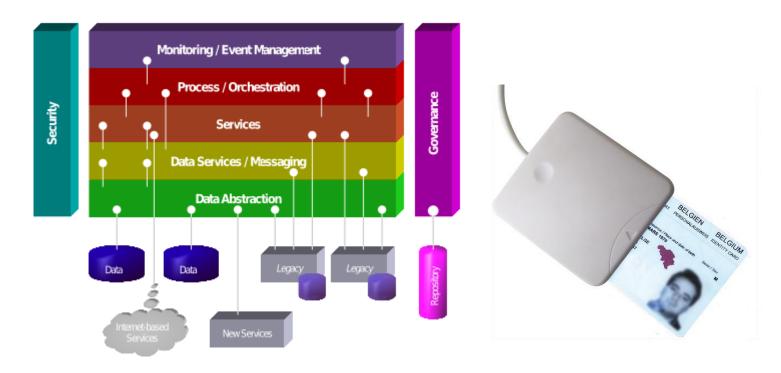
- 1. Все бизнес-процессы собирают и немедленно (real-time) актуализируют информацию для ВІМ (большой акцент на датчики объективной информации и документооборот в полевых условиях).
- 2. Инфраструктура дорожных данных: нет дублирования при вводе данных (синхронизация всех технических и обеспечивающих процессов: бухгалтерии,...).

1.9. Зрелость ВІМ: время отклика на запросы

Модель зрелости ВІМ в National ВІМ Standard (США):

F. Timeliness/Response (Время выполнения запросов):

- 1. Вся информация организации находится в ВІМ, непрерывно обновляется на основе данных от датчиков и операторов (все бумажные архивы оцифрованы).
- 2. Ответы на запросы поступают немедленно, доступны, точны и имеют юридическую значимость.



1.10. Зрелость ВІМ: метод доступа

Модель зрелости ВІМ в National ВІМ Standard (США):

G. Delivery Method (Метод доступа):

- 1. Все данные доступны через интернет в архитектуре SOA (Service-Oriented Architecture). Позволяет создавать дополнительные приложения.
- 2. Жёсткие ограничения по безопасности (шифрование и смарт-карты).

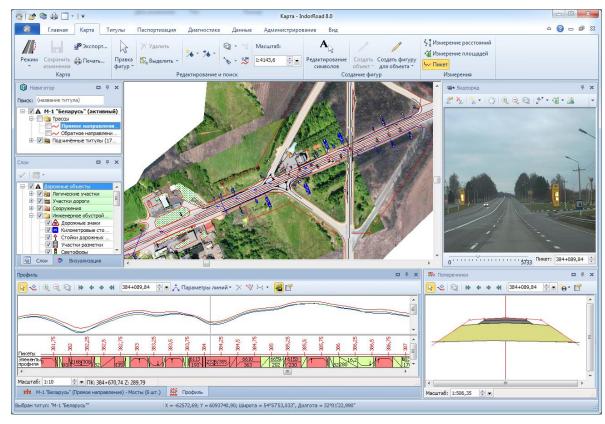


1.11. Зрелость ВІМ: графическая информация

Модель зрелости BIM в National BIM Standard (США):

H. Graphical Information (Графическая информация):

- 1. 3D: Вместо чертежей модели объектов в некотором стандарте.
- 2. 4D: Проектируемые объекты имеют календарный график строительства.
- **3. 4D**: Эксплуатируемые объекты имеют архив изменений.
- 4. 5D: Все объекты имеют стоимостные характеристики.
- 5. nD: К объектам привязана иная информация.

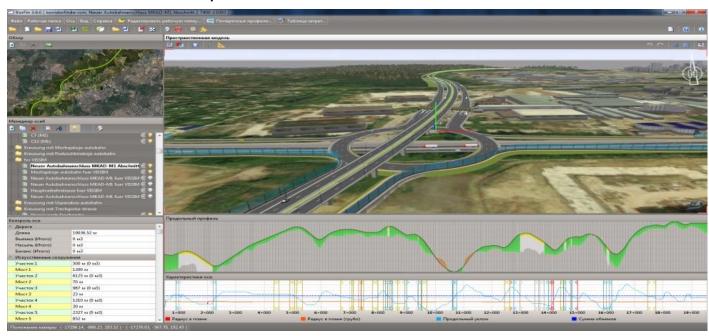


1.12. Зрелость ВІМ: ГИС-возможности

Модель зрелости BIM в National BIM Standard (США):

I. Spatial Capability (Пространственные возможности):

- 1. Все объекты в ВІМ имеют точную географическую привязку.
- 2. Информация из BIM полностью доступна в ГИС, включая все метаданные.

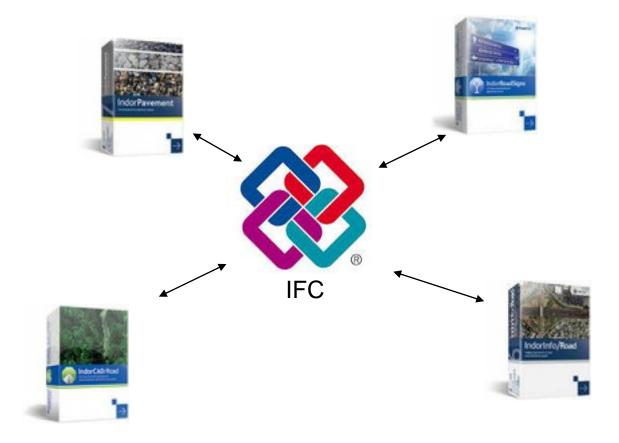


1.13. Зрелость ВІМ: точность данных

Модель зрелости BIM в National BIM Standard (США):

J. Information Accuracy (Информационная точность):

- 1. Все объекты вычисляются автоматически на основе целевых показателей.
- 2. Модель автоматически корректируется при наличии внешних ограничений (экологии, рельефа...).
- 3. Точность и правильность модели полностью контролируется вычисляемыми метриками и целевыми показателями.



1.14. Зрелость BIM: обмен данными

Модель зрелости ВІМ в National ВІМ Standard (США):

K. Interoperability/IFC Support (Интероперабельность/Поддержка IFC):

- 1. Используются <u>только</u> коробочные коммерческие продукты (COTS).
- 2. Все программные продукты для обмена данными используют <u>только</u> IFC.

BIM автодорог

1.15. Зрелость ВІМ: ситуация в РФ

Критерий оценки	Bec, %	ОУДХ Росавто дора	ГК Авто- дор	Территориаль- ные ОУДХ	Проектные организа- ции	Строитель- ные орга- низации	Эксплуати- рующие ор- ганизации
Data Richness	84%	5	6	4	5	1	1
Life-cycle Views	84%	5	6	5	2	2	1
Roles Or Disciplines	90%	4	4	4	3	1	1
Change Management	90%	1	1	1	1	1	1
Business process	91%	3	3	3	4	1	1
Timeliness/Response	91%	4	5	3	5	2	2
Delivery Method	92%	7	5	4	3	2	2
Graphical Information	93%	7	7	6	7	2	1
Spatial Capability	94%	7	8	6	8	3	1
Information Accuracy	95%	3	3	3	7	1	1
Interoperability/IFC Support	96%	4	4	3	7	2	1
Итого:		45,49	47,18	38,15	47,83	16,44	11,83

Итоговая оценка: никто не может получить даже **Minimum BIM (50 баллов)**

2.1. Внедрение ВІМ в России

Во исполнение Протокола №2 заседания президиума Совета при Президенте Российской Федерации по модернизации экономики и инновационному развитию от 4 марта 2014 г. ведётся разработка:

«Плана поэтапного внедрения технологий информационного моделирования в области промышленного и гражданского строительства».

Контрольные показатели проекта плана:

Наименование контрольного показателя	2015 г.	2016 г.	2017 г.	2018 г.	2019 г.
- количество отечественных компаний,	5%	10%	20%	50%	75%
использующих технологии информационного					
моделирования					
- количество проектов, выпущенных с	3%	5%	10%	30%	50%
использованием технологий информационного					
моделирования зданий и сооружений					
- снижение затрат на осуществление					
проектирования и строительства объектов с				20%	
использованием технологий информационного					
моделирования					
- снижение затрат на осуществление эксплуатации					
объектов, созданных на основе технологий				35%	
информационного моделирования					
- повышение энергоэффективности объектов,					
созданных на основе технологий				?	
информационного моделирования					
- количество проектов, выпущенных на				5%	25%
национальной технологической платформе					

2.2. PLM, BIM, IMI

Maшиностроение: цель – PLM (product lifecycle management).

STEP: семейство ISO 10303 (ГОСТ Р ИСО 10303): <u>620</u> (в РФ <u>192</u>) стандартов. **PLIB**: семейство ISO 13584 (ГОСТ Р ИСО 13584): **13** (в РФ **8**) стандартов.

ПГС: цель – **BIM** (building information modeling).

IFC 4: ISO 16739:2013.

ВІМ: семейство ISO 29481: пока только 2 стандарта, но планируются десятки.

IPD: ISO 12006, ISO/TS 12911, ISO 16354, ISO 22263 (в РФ аналогов нет).

Инфраструктура: цель – IMI (information modeling of infrastructure).

Проект «IFC for Infrastructure»: стадия обсуждения идей в buildingSMART. ИТС: большой задел, благодаря ТК 57.

2.3. Обновление дорожных стандартов

Этап 1. Заложить в стандарты возможность автоматизации:

- 1.1. Привести классификации объектов и характеристик в машинночитаемый вид. Ввести идентификаторы объектов и значений характеристик.
- 1.2. Устранить противоречия между смежными (или одними и теми же) классификациями в различных стандартах.
- 1.3. Привести существующие стандарты в вид, не допускающий неоднозначную машинную интерпретацию (устранить графики, номограммы в пользу формул и электронных приложений).
- 1.4. Разработать правила соответствия иным (зарубежным) стандартам.
- 1.5. Разработать модели дорожных данных и форматы обмена данными.
- 1.6. Внедрить практику создания электронных приложений к стандартам.
- 1.7. Создать нормативно-справочный элемент инфраструктуры дорожных данных РФ, включающий в себя в электронном виде классификаторы объектов и характеристик, различные справочники, электронные приложения в стандартам.

2.4. Обновление дорожных стандартов

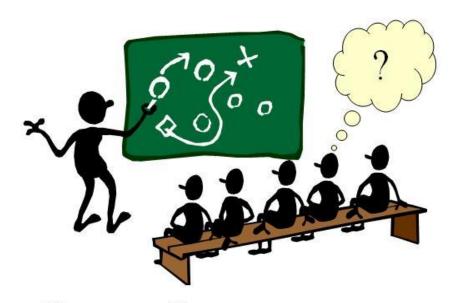
Этап 2. Заложить в стандарты возможность **автоматического** принятия решений и информационного моделирования:

- 2.1. Согласовать стандарты, оперирующие одними объектами, но на разных этапах жизненного цикла (единые классификаторы или правила соответствия).
- 2.2. Принять единую систему координат (пространственную и линейную). Определить правила пересчёта координат в течение жизненного цикла.
- 2.3. Создать инфраструктуру дорожных данных, объединяющую всю совокупность сведений об автомобильных дорогах (актуальные сведения, архивные, проектные решения).
- 2.4. Формализовать процесс проектирования и управления дорогой с целью автоматического принятия технических решений (как следствие, существующие стандарты получат разделы, которые необходимы только разработчикам автоматизированных систем).
- 2.5. Изменить существующие отраслевые бизнес-процессы с целью 1) поддержания в актуальном состоянии всей полноты сведений о дороге и 2) повышения объективности принятия решений за счёт применения информационных технологий.

2.5. Координирование тех. регулирования BIM

Техническое регулирование ВІМ в ISO:

- 1. Технический комитет ISO/TC 59 Buildings and civil engineering works (Строительство зданий), подкомитет <u>SC 13 Organization of information about construction works</u> (Организация информации о строительных работах).
- 2. ISO/TC 184 Automation systems and integration (Системы промышленной автоматизации и интеграции), подкомитет SC 4 Industrial data (Промышленные данные).


Техническое регулирование ВІМ автомобильных дорог в РФ:

ТК 418 «Дорожное хозяйство» в Росстандарте:

- 1. Предлагается добавить код ОКС 35.020 Информационные технологии (ИТ) в целом (как в ТК 57 «Интеллектуальные транспортные системы»).
- 2. Предлагается создать подкомитет № 6 «Дорожные данные» (на базе «Автодор-Инжиниринг»?).

Вопросы?

Спасибо за внимание!

Скворцов Алексей Владимирович, д.т.н., профессор, академик РАТ, генеральный директор ООО «ИндорСофт», г. Томск

Петренко Денис Александрович, технический директор ООО «ИндорСофт», г. Томск